【高校科研前沿】华东师大白开旭教授博士研究生李珂为一作在RSE发表团队最新成果:基于波谱特征优化的全球大气甲烷智能反演技术

文章简介

论文名称Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data(基于TROPOMI和GOSAT数据,通过机器学习和多目标规划实现大气甲烷的无偏估计)

第一作者及通讯作者:李珂(博士研究生);白开旭(教授)

第一作者及通讯作者单位:华东师范大学地理科学学院

文章发表期刊:Remote Sensing of Environment》(中科院1区Top期刊|最新影响因子:13.5)

期刊平均审稿速度:3.3个月

研究内容

1.导读

依托卫星遥感平台实现大气温室气体浓度的快速精准监测,对制定减排目标和落实减排成效具有重要的支撑作用和现实意义。温室气体遥感反演多采用基于辐射传输在线模拟的全物理最优估计算法,其计算成本高且算法限制多,严重制约温室气体浓度的反演效率和成功率。针对该难题,华东师范大学白开旭教授课题组通过正向辐射传输模拟,筛选出Sentinel-5P卫星短波红外谱段的甲烷敏感吸收通道,基于甲烷波谱特征优化策略,发展了一种协同多源卫星数据资料的的大气甲烷浓度智能遥感反演算法(UNMAMO),实现全球甲烷浓度高效制图。

地基验证结果表明,UNMAMO XCH4反演结果与TCCON地基实测数据间具有良好的一致性,相关系数为0.89,均方根误差为16.74 ppb,优于TROPOMI官方反演XCH4产品精度。其中,采用波段比值的反演策略能够显著降低地表反照率、气溶胶和海拔等因素引入的反演误差,反演精度较欧空局官方全物理算法提升了13.92%;同时,数据-机理双驱动的机器学习反演策略精简了迭代优化过程,反演速率较全物理算法提升4800余倍;由于克服了地表形态和迭代次数的约束,有效反演结果的空间覆盖率较欧空局官方产品提升了136%。

2.研究方法

为针对性解决官方业务算法(RemoTeC)计算量大、耗时长、迭代求解过程中限制众多等难题,白开旭教授课题组耦合物理机理与机器学习方法,发展了协同多源卫星数据的全球大气甲烷浓度智能快速反演算法(UNMAMO),主要包括三个步骤(图1):

(1)辐射传输模拟

利用SCIATRAN辐射传输模型精准模拟TROPOMI短波红外波段甲烷与其他干扰信息(如水汽、氧化亚氮、一氧化碳以及气溶胶与地表反照率等)的光谱敏感性,计算光谱相对变化率。

(2)敏感通道筛选

根据辐射传输模拟结果,利用多目标优化策略在数百个TROPOMI高光谱短波红外波段中确定甲烷敏感与非敏感通道,计算每一个敏感通道与相邻非敏感通道的波段比值,作为甲烷反演的关键示踪变量。

(3)机器学习反演

构建数据-机理双驱动的机器学习模型,并加入气象因素、卫星几何角度等关键辅助变量,拟合GOSAT甲烷浓度与TROPOMI波段比值之间的映射关系,实现全球甲烷浓度快速准确制图。

图片

图1|本研究开发了基于机器学习和多目标规划(UNMAMO)方法的无偏甲烷估计流程图

3.研究结果

图2比较了UNMAMO XCH4反演结果与GOSAT和TROPOMI官方产品的空间分布差异。相对于稀疏的GOSAT XCH4反演,TROPOMI-like反演提供了甲烷浓度的大量空间细节,特别地,UNMAMO的有效反演像元数量远超过其他两种官方结果。以GOSAT反演结果为基准,S5P-L2 XCH4低估了2021年2月25日~27日中非地区的甲烷浓度。相比于UNMAMO反演结果,S5P-L2 XCH4在2021年12月1日中国西部和南亚地区存在较多反演数据缺失,这主要是由于亮地表和较高粗糙度导致的反演失败。此外,可以观察到S5P-L2 XCH4反演存在明显的条带效应,而UNMAMO反演则能够较好地克服这一问题,提供了更加平滑的甲烷浓度分布,进一步证实了甲烷波谱特征优化和机器学习反演框架的有效性。

图片

图2|UNMAMO XCH4反演结果与官方产品的空间分布对比

图3显示了典型排放源区域的甲烷浓度空间分布,有效证实了UNMAMO甲烷反演技术在监测全球大型甲烷排放源方面的优势与潜力。其中,在石油/天然气/煤矿开采地区可观察到显著的甲烷异常排放,如美国德克萨斯州和新墨西哥州的二叠纪盆地(图3a)、中国新疆的准东煤矿(图3b)、澳大利亚新南威尔士州的猎人谷煤矿(图3d)、阿尔及利亚的哈西迈萨乌德油田(图3f)等。湿地和水稻田是全球主要的甲烷自然排放源,在中国东部的高密度农业区可观察到明显的甲烷高值区(图3c),在中非等地区的热带湿地也发现甲烷的高值分布(图3e)。上述发现与结果可证实了UNMAMO甲烷反演技术在确定大型甲烷排放源、支持全球甲烷核算管理方面的技术潜力和应用价值。

图片

图3|UNMAMO反演结果在监测甲烷排放源中的数据优势与潜力

4.总结

1.联合TROPOMI与GOSAT卫星数据,提出了一种耦合物理机制与机器学习技术的全球大气甲烷浓度智能反演算法,显著提升了大气甲烷反演的计算效率。

2.有效消除了气溶胶和暗地表等因素对甲烷反演的干扰,UNMAMO反演结果与TCCON地基验证数据的一致性更好。

3.克服了官方全物理反演算法失败率高的限制,同时有效抑制了高光谱探测引起的条带效应,UNMAMO反演结果的数据覆盖程度更高且空间分布更加平滑。

文章引用

文献引用:Ke Li, Kaixu Bai, Penglong Jiao, He Chen, Huiqun He, Liuqing Shao, Yibing Sun, Zhe Zheng, Ruijie Li, NiBin Chang, Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data,Remote Sensing of Environment,Volume 304, 2024, 114039,ISSN00344257,https://doi.org/10.1016/j.rse. 2024.114039.

信息来源:华东师范大学地理科学学院官网

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/583571.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OS复习笔记ch5-1

引言 讲解完进程和线程之后,我们就要来到进程的并发控制这里,这一章和下一章是考试喜欢考察的点,有可能会出大题,面试也有可能会被频繁问到,所以章节内容较多。请小伙伴们慢慢食用,看完之后多思考加强消化…

【JPE】顶刊测算-工业智能化数据(附stata代码)

数据来源:国家TJ局、CEC2008、IFR数据 时间跨度:2006-2019年 数据范围:各省、地级市 数据指标: 本数据集展示了2006-2019年各省、各地级市的共工业智能化水平的数据。本数据集包含三种构建工业机器人密度来反映工业智能化水平的方…

基于Springboot的数字化农家乐管理平台(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的数字化农家乐管理平台(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系…

Apache Seata基于改良版雪花算法的分布式UUID生成器分析2

title: 关于新版雪花算法的答疑 author: selfishlover keywords: [Seata, snowflake, UUID, page split] date: 2021/06/21 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 关于新版雪花算法的答疑 在上一篇关于新版雪花算法的解析中…

web前端学习笔记4

4. 盒子模型 4.0 代码地址 https://gitee.com/qiangge95243611/java118/tree/master/web/day044.1 什么是盒子模型(Box Model) 所有HTML元素可以看作盒子,在CSS中,"box model"这一术语是用来设计和布局时使用。 CSS盒模型本质上是一个盒子,封装周围的HTML元素,…

在Docker中部署Java应用:Java版本隔离的实践案例

在Docker中部署Java应用:Java版本隔离的实践案例 人生就是一场又一场的相遇,一个明媚,一个忧伤,一个华丽,一个冒险,一个倔强,一个柔软,最后那个正在成长。 背景需求 在软件开发和部…

Debian 12 -bash: netstat: command not found 解决办法

问题表现: debian 12系统中,不能使用 netstat命令 处理办法: netstat 命令就的net-tools中,把net-tools工具安装上就好了。 apt-get install netstat 安装之后就可以使用netstat 命令了,如查询端口情况: …

基于SpringBoot+Vue高校宣讲会管理系统设计与实现

项目介绍: 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装高校宣讲会管理系统软件来发挥其高效地信息…

C# Web控件与数据感应之 Control 类

目录 关于数据感应 Control 类 范例运行环境 simpleDataListEx方法 设计 实现 调用示例 数据源 调用 小结 关于数据感应 数据感应也即数据捆绑,是一种动态的,Web控件与数据源之间的交互,诸如 ListControl 类类型控件,在…

pytest教程-35-钩子函数-pytest_unconfigure

领取资料,咨询答疑,请➕wei: June__Go 上一小节我们学习了pytest_configure钩子函数的使用方法,本小节我们讲解一下pytest_unconfigure钩子函数的使用方法。 pytest_unconfigure(config) 是一个 pytest 钩子函数,它在 pytest 退…

【linux运维】vim基础应用

系列综述: 💞目的:本系列是个人整理为了学习基本的shell编程和linux命令,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于b站大学——linux运维课程进行的,…

【MHA】MySQL高可用MHA源码1-主库故障监控

1 阅读之前的准备工作 1 一个IDE工具 ,博主自己尝试了vscode安装perl的插件,但是函数 、变量 、模块等都不能跳转,阅读起来不是很方便。后来尝试使用了pycharm安装perl插件,阅读支持跳转,自己也能写一些简单的测试样例…

[iOS]组件化开发

一、组件化开发基础 1.组件定义 在软件开发中,一个组件是指一个独立的、可替换的软件单元,它封装了一组相关的功能。组件通过定义的接口与外界交互,并且这些接口隔离了组件内部的实现细节。在Swift语言中,组件可以是一个模块、一…

CCF-CSP真题题解:201312-2 ISBN号码

201312-2 ISBN号码 #include <iostream> #include <cstring> #include <algorithm> using namespace std;string s;int main() {cin >> s;int num 0;for (int i 0, p 1; i < s.size() - 1; i)if (s[i] ! -) {num (s[i] - 0) * p;p;}num % 11;ch…

win11 自带分区磁盘管理,右键U盘 删除卷,显示不支持该请求

win11 自带分区磁盘管理&#xff0c;右键U盘 删除卷&#xff0c;显示不支持该请求&#xff0c;打开cmd 输入下面命令 1.diskpart 2.list disk 3.sel disk (U盘盘符编号) 4.clean

Linux vi\vim编辑器

vi/vim编辑器 一、vi\vim 编辑器的三种工作模式1.命令模式&#xff08;Command mode&#xff09;2.输入模式&#xff08;Insert mode&#xff09;3.底线命令模式&#xff08;Last line mode&#xff09; 二、参考 vi\vim 是 visual interface 的简称&#xff0c;是 Linux 中最经…

Tcp 协议的接口测试

首先明确 Tcp 的概念&#xff0c;针对 Tcp 协议进行接口测试&#xff0c;是指基于 Tcp 协议的上层协议比如 Http &#xff0c;串口&#xff0c;网口&#xff0c; Socket 等。这些协议与 Http 测试方法类似&#xff08;具体查看接口自动化测试章节&#xff09;&#xff0c;但在测…

大数据计算引擎中的Calcite

1.Calcite介绍 Calcite是一个动态数据库管理框架&#xff0c;具备数据库管理系统的功能 Calcite具备SQL解析、校验、优化、生成、连接查询等功能 Calcite能够为不同平台和数据源提供统一的查询引擎 2.Calcite能力 比如&#xff0c;对于HBase而言&#xff0c;没有SQL查询的能力…

Qt 6 开源版(免费) -- 安装图解

Qt6起&#xff0c;两项重大改变&#xff08;并非指技术&#xff09;&#xff1a; 必须在线安装&#xff0c;不再提供单独的安装包主推收费的商业版 当然的&#xff0c;为了引流、培养市场&#xff0c;提供了一个免费的开源版本。 开源版相对于收费的商业版&#xff0c;主体是…

PostgreSQL 14 向量相似度搜索插件 (pgvector) 安装指南

本文是关于在 PostgreSQL 14 中安装并使用向量相似度搜索插件(pgvector)的详细指南。此插件允许用户在数据库中执行高效的向量运算,特别适用于机器学习模型的向量数据存储与检索场景。 环境需求 已安装PostgreSQL 14或更高版本。安装了Visual Studio 2022,用于编译插件。安装…